當前,全球范圍內前沿技術與顛覆性技術正以前所未有的速度實現突破,新一輪科技革命和產業變革正在加速推進,科學技術對社會經濟發展的影響變得更為直接、迅速且廣泛。機器人正處于一個重要的轉折點上,人工智能、大數據、新材料、新型傳感、生物仿生等多種技術迅速崛起,并與機器人加速融合,推動機器人向更智能、更高效、更靈活和更安全的方向發展,不斷拓寬機器人技術和應用的邊界。
相關技術的飛速發展,使得對機器人未來發展的預測已經難以用傳統的線性方式加以推斷。在此背景下,2024年美國《機器人路線圖》放棄制定此前一貫的5年、10年和15年的愿景與目標,不再以明確的時間框架推動技術的發展,轉而更側重于表達趨勢和方向,共提出物理具身、操作、感知、控制、規劃、邊緣AI、機器學習和與人交互八個研究方向,以保持可持續發展和確保美國成為機器人技術的領導者之一。以下是對這八個研究方向的簡要概述。
物理具身
物理具身指的是智能不能僅以抽象算法的形式存在,而需要一個物理身體與世界互動,機器人系統是具身智能的體現。
軟體機器人技術
軟體機器人技術運用軟材料和結構設計、制造和控制機器人系統,并借助形態計算簡化與外界的交互。為模擬生物的多功能性,需在材料、制造、建模和控制上不斷創新。借助生成設計和多材料增材制造等前沿設計與制造方法,軟體機器人技術或將超越生物啟發,實現新的物理能力。數字化生產和即時制造為個性化機器人設計帶來新機遇,實現軟性與剛性組件的無縫過渡。
作動與動力
創建高力量、長壽命、低成本的機器人作動與動力系統仍具挑戰。動物的肌肉和新陳代謝被視為黃金標準,工程系統尚未企及。電磁作動器適用于剛性機器人但功率重量比待提升。液壓系統功率高但不適于移動機器人。氣動作動器適用于軟體機器人但控制難。智能材料如電活性聚合物、HASEL作動器,有優勢但力量小,并需專用電源。作動技術和電源存儲/傳輸系統的新突破將幫助機器人實現長期移動性、安全性和強度。
感知
對于軟體機器人,感知能力尤為關鍵。生物體擁有密集的感知系統,同時監測外界與自身。應推動柔性及軟性傳感器與軟體機器人的融合,集成多類型傳感器信息,并有效利用這些信息,以建模并控制軟體機器人執行精細操作、狹窄空間移動及安全人機交互等復雜任務。
操作
目前,機器人操作器面臨著成本高、通用性不足的雙重挑戰。為克服這些不足,可以開展以下研究活動。
發展先進的抓握機制:利用仿生學和軟體機器人的概念來設計多功能抓握機構;探索柔韌性和適應性突出的新材料;開發功能性的非傳統抓握器設計。
加強先進的觸覺感知:開發密集、耐磨的觸覺傳感器,并能完全覆蓋操作器;創建復雜的算法,將密集的感知信號解釋為可操作的運動策略。
基于學習的控制策略:通過應用機器學習和強化學習技術,使機器人能夠適應性地控制操作任務,并通過反復試驗學習新技能,并將學到的技能轉移到不同的機器人平臺上,以增強機器人系統的通用性和效率。
人機協作領域:提高協作式機器人系統與人在共享工作空間中的安全性,包括發展自然語言處理和手勢識別技術,以能確保無縫互動和協作的安全機制。
復雜環境中的靈巧操縱:增強機器人系統在動態雜亂環境下的操縱能力,包括開發用于路徑規劃和避障的先進算法,以及探索多模態感知技術的集成。
規劃和控制的基本算法:穩固發展基本算法,以改善機器人在日常任務中的穩健性、效率和易用性,為新的操作器和傳感器設計提供更強有力的支持,使學習大模型能夠自我探索。
自主機器人操作:整合用于對象識別和場景理解的復雜感知系統;開發能夠實現自主決策和任務規劃的算法,并打造動態抓握和操作策略。
感知
感知是連接機器人與物理世界的關鍵方式,可以開展以下研究活動。
復雜的高維推斷:高維推斷在計算機視覺中是關鍵,尤其是在預測抓取對象等任務上。這些任務要求的方法和架構與識別或檢測任務不同。隨著AI和大型語言模型(LLMs)的發展,系統往往變得像“黑盒子”,缺乏透明度。這不僅影響了機器人的問責性,也影響了人們對機器人的信任。
網絡安全和計算機視覺:確保網絡安全與計算機視覺系統設計緊密融合至關重要,以避免錯誤預測和推論。采用對抗性訓練和輸入驗證等方法可有效降低安全風險。
主動感知:目前系統主要被動處理數據,未能充分利用主動感知和捕獲冗余信息的能力。開發能夠主動探索環境的系統,將顯著提升其性能。
開放世界的表現:計算機視覺系統往往基于封閉世界假設,僅從有限數據學習。然而,機器人需適應未知刺激和新任務變化,實現在開放世界中泛化的能力。
與系統集成:視覺系統需與其他系統集成,提供自我性能評估,包括驗證視覺組件或基于視覺系統的方法,并確保輸出與可靠性和不確定性相關的信息。
系統結構:通過圖像任務進行端到端強化學習,但不利于相似任務或環境的遷移。傳統方法分別訓練視覺與動作模塊,但現代視覺模塊在動作或規劃上的適應性受限于可靠性問題。
控制
安全控制:在高度非線性的機器人系統、高維系統、多機器人系統和人機協同系統中,設計安全控制器面臨挑戰,需對數據驅動型控制器的安全性進行認證,解決實時性能問題,嵌入式控制器或邊緣計算單元上有效運行。
生物啟發控制:研究新生物機制以設計控制器,構建和利用大規模數據集嚴格設計控制器,并考慮機器人的傳感器、作動器和通信系統的限制。
控制高維度和不連續系統:機器人與人類和現實環境的交互會導致系統狀態的突變,設計協調機器人關節執行任務的控制器極具挑戰,需開發混合系統控制器,確保機器人能成功應用于現實世界。
機器人機構、控制和學習的共同發展:未來機器人需在材料、設計、控制、學習、感知和測試等方面實現協同,優化整體性能以適應現實任務。控制系統是連接設計與學習的關鍵,需進行基礎研究來認證機器人性能,以支持機構-控制-學習的整合設計。
規劃
隨著機器人繼續走出實驗室,進入現實世界,它們將繼續需要規劃和控制算法,更好地處理它們將遇到的非結構化、不可預測和更復雜的情況。
不確定性下的規劃
規劃方法必須適應真實世界的不確定性,優先考慮概率方法和那些不依賴于對世界的準確高保真模型;在危險環境中,評估潛在錯誤的嚴重性和對機器人操作可行性的影響,以避免完全故障;傳統離線規劃和實時執行模型在動態環境中效果不佳,而在線規劃可能因短視錯過更優解,實現方法間的平衡是當前的重要挑戰。
與人類互動中的安全性
隨著機器人進入人類空間,需平衡效率與安全,提高透明度和可解釋性;研究人機共同規劃,探討任務分配和避免物理干擾;混合自治允許在故障時移交控制權給人類;大語言模型將促進機器人與人類的對話。
操作和全身規劃
深入研究操作規劃和全身規劃,將兩者結合會增加問題復雜性,需開發新技術和算法,并與GPU等硬件集成。
邊緣AI
能源效率和自主性:探索諸如模型量化、修剪和壓縮等技術,降低AI算法的計算復雜性;發展能源感知硬件設計,包括低功耗處理器、能源高效傳感器和功率管理技術,延長機器人系統的運行自主性。
實時處理和減少延遲:重點優化AI算法,在邊緣設備上以低延遲執行,利用諸如模型并行性、流水線和硬件加速等技術;邊緣計算架構必須設計成最小化處理延遲,通過將AI推理與數據采集和執行同步。
硬件-軟件協同設計:探索協同設計方法,將硬件架構定制為機器人應用中使用的AI算法的特定計算要求,包括開發專門用于卷積神經網絡(CNN)推理、遞歸神經網絡(RNN)處理和傳感器數據融合等任務的加速器,集成高效的軟件框架,實現無縫部署和管理。
穩健的感知和態勢感知:提高AI算法的魯棒性以實現傳感器融合、SLAM、目標檢測和跟蹤、語義分割和場景理解,并處理光照條件的變化、遮擋、雜亂環境和傳感器噪聲等挑戰性場景,增強機器人系統的態勢感知。
適應性和持續學習:探索持續學習技術,機器人可以逐步獲得新技能,調整其行為以適應不斷變化的任務和環境,并通過經驗不斷改善性能,包括在線強化學習、元學習、遷移學習和知識蒸餾方法。
隱私保護和安全性:重點開發強大的加密、認證和訪問控制機制,以維護數據的完整性和隱私;探索安全多方計算、聯邦學習和差分隱私等技術,以實現協作AI而不損害安全性。
邊緣-云協作和資源管理:探索動態工作負載分配、數據卸載和邊緣-云同步等技術,以平衡資源利用率,同時最小化延遲、帶寬和能源消耗,包括分散式編排算法、邊緣緩存策略和適應性通信協議的開發。
互操作性和標準化:開發用于在邊緣設備和機器人之間交換數據、命令和服務的開放標準、通信協議和軟件接口;簡化即插即用的互操作性、可互操作的軟件框架以及促進機器人系統中可重用性、可擴展性和靈活性的模塊化架構。
機器學習
深度學習極大推動了機器視覺和機器人控制;A模型使機器人能對話、實現語言訓練,并與視覺演示相結合,推進了從演示中學習的機器人(LfD)。然而,大型多模態模型雖有價值,但缺乏可解釋性可能導致系統不受信任。可解釋AI和可解釋性的研究正在填補這一差距。此外,完全自主系統的性能超過其他部件之和,學習組件需根據其對整體性能的影響評估,而評估過程耗時費力。為構建和評估完整的自主系統,需要改進評估方法,包括主動測試、利用歷史數據的評估方法,以及適用于復雜環境的可擴展技術。
與人交互
協作機器人(物理人機交互)
協作機器人能與人安全直接地進行交互,以提高任務的速度、準確性、力量或規模,協作機器人需要更安全、靈活、緊湊且易于使用。
安全:在保證完成任務的同時,設計低慣性質量、柔順表面的機器人以防止對人造成傷害。材料上,研究新材料,包括漸變剛度的作動器和表面,輕量級可部署和形狀可控的結構,以及將作動器與結構集成在一起的智能材料;軟件上,強化安全評級和人體檢測,提高自主機器人可解釋性。
靈活性:通過演示學習或模仿學習,借助少量數據,機器人能夠執行自主任務,也是實現協作的有效方法;強化學習可以調整以符合用戶偏好,也有助于創建以人為本的協作系統;在交互背景下,構建用戶模型,涵蓋感知、行動、目標和偏好,適用于多用戶與機器人協同,也可在特定交互中實現高度個性化。
緊湊性:發展新的智能材料和作動器,實現在人類工作空間內占用最小體積的機器人;探索利用機械相互作用來改變其姿勢或形狀的新設計。
易用性:探索人機互助的交互模式,確保機器人以“零學習曲線”相似的無縫方式傳達其能力和限制;進一步發展可解釋性;深入研究協作機器人在家庭移動操作、人類護理及動態任務如協作工具處理、物體共同操縱等領域的應用。
社交陪伴機器人(社交人機交互)
陪伴機器人在人類生活各領域潛力巨大,包括老年人護理、兒童發展、教育、治療和心理健康支持。盡管自然語言處理提升了機器人的交流能力,但穩健和易用的對話系統尚未普及,特別是對于具有口音、語音不連貫的用戶。機器人需發展多模式通信能力,包括頭部、身體姿勢、面部表情、手勢等非語言信號;機器人需要感知和理解用戶狀態、行為和意圖,基礎模型雖有望推動這一能力,但訓練數據可能不足且存在偏見,影響對特殊群體的正確理解;情感計算研究將幫助機器人理解人類情感,并需考慮到不同的環境,包括不同的視角、光照條件、運動、遮擋等;陪伴機器人的物理設計需跨學科合作,考量安全性、成本、效能和文化適應性,需探索機器人形態與功能在不同環境中的最優組合。
媒介交互
協作機器人和社交機器人不僅可以與用戶共享空間,還能執行遠程操作,以及在危險環境中執行任務,如遠程手術、管道橋梁等基礎設施檢查和太空探索。交互媒介也多種多樣,如搖桿、語音指令、腦機接口等。交互難點一般在于操作者要具有足夠的“處境意識”,并做出正確的控制決策。需發展增強現實和混合現實技術以提高“處境意識”,新的可穿戴設備也可為“處境意識”的集成提供機會;觸覺反饋對精準操作和社交互動至關重要,需進一步實現大面積接觸感知和高效封裝,并開發輕巧、舒適和便攜的可穿戴觸覺設備,可以從軟體機器人技術借鑒。此外,在安全場景中,人類可以操作控制非人形或運動學不匹配的機器人,如一群機器人或連續外科機器人,需開發能夠直觀映射人類輸入與機器人動作的界面。